بحث منشور للدكتور عبدالأمير عبدالله الموسوي حول Isolation and Identification of Shikonin From Arnebia Decumbens L. and its Antibacterial Activity
تاريخ النشر : 2014-09-14 17:41:22
عدد المشاهدات : 1689
تاريخ النشر : 2014-09-14 17:41:22
عدد المشاهدات : 1689
Journal of Applied Sciences Research, 6(9): 1452-1456, 2010
© 2010, INSInet Publication
Isolation and Identification of Shikonin From Arnebia Decumbens L. and its
Antibacterial Activity
Abdulameer. A. Al-Mussawi
Biology Department, Education College, Basrah University
Abstract: This study have been comprised three parts : first collected and taxonomy Arnebia decumbens
L. from south of Iraq, part two isolation and purification Shikonin compound by column chromatography
technique and identification it by many techniques, part three investigate antibacterial activity of shikonin.
The chemical analysis results showed pure Shikonin compound. The results showed that the Shikonin
exhibits greatest antibacterial activity, (50 mm) against Pseudomonas aeruginosa, (45 mm) against
Escherichia coli, (40 mm) against Staphylococcus aureus, and (38 mm) against Klebsiella pneumonia.
Key words: Arnebia; decumbens; Shikonin; Antibacterial activity.
INTRODUCTION
Arnebia decumbanis L. related from Boraginaceae
family Perennial growing to 0.3m. It is in flowering
from June to August, and the seeds ripen from July to
September. The flowers are hermaphrodite[1].
Arnebia species have many biological activities .
The root of Its reported as Anti-inflammatory activity.
The hexane extract of Arnebia hispidissima yielded a
mixture of naphthaquinones: arnebin-1, arnebin-7, tiglic
acid (ester of dihydroxy alkannin), alkannin, arnebinol
and cycloarnebin-7[11].
Afzal and Al-Oreqat[1] investigated shikonin
derivatives from Arnebia decumbens from Kuwait
deserts and identified by NMR.
Chien-Chang et al.,[4] were study the Bioassay-directed
fractionation of extract of Arnebia euchroma led to the
isolation of alkannin (1), shikonin (2), and their
derivatives and tested they against methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycinresistant
enterococci (VRE). The derivatives of
shikonin and alkannin showed stronger anti-MRSA
activity than alkannin or shikonin. Some derivatives
were also active against vancomycin-resistant
Enterococcus faecium (F935) and vancomycin-resistant
Enterococcus faecalis (CKU-17) with MICs similar to
those with MRSA.
Singh et al.,[11] studied anti-inflammatory activity
of shikonin derivatives from Arnebia hispidissima
ethanolic extract, after chromatography, yielded a
number of shikonin derivatives, which were identified
as arnebin-5, arnebin-6, teracryl shikonin, arnebinone
and acetyl shikonin. All these compounds were
evaluated to the anti-inflammatory activity of ethanolic
extract and isolated shikonin derivatives.
We chose this plant in this study because its exist
in south of Iraq and no any study identified chemical
compositions and investigated in biological activity.
MATERIALS AND METHODS
Plant Material: Arnebia decumbanes L. is abundantly
available in Iraqi deserts. The plant material used in
this study were collected from various locations in
Basrah in March and April 2005, 2006, 2007
classified by dr. Ali Aboud.
Microorganisms and Media: The test organisms
used in this study were as followed: Gram positive
Staphylococcus aureus) and Gram negative bacteria
(Escherichia coli, Klebsiella pneumonia and
Pseudomonas aerugenosa).
These bacteria were obtained from the
Bacteriological lab, Biology department , Education
college, University of Basrah, Iraq.
Preparation of Plant Extract: The roots of Arnebia
decumbens L. (50g) were air-dried and then powdered.
The powder was extracted with hexane and evaporated
invacuo and concentrated by high vaccum. The
concentrated extract was purified by column
chromatography on silica gel eluted with ethylacetate
and spirit petrol (2:1).
Corresponding Author: Abdalameer. A. Al-Mussawi, Biology Department / Education College / Basrah University
E-mail: dr_ameer2006@yahoo.com
1452
J. Appl. Sci. Res., 6(9): 1452-1456, 2010
Antimicrobial Susceptibility Testing Hole Diffusion
Method: Antibacterial activity tested against Grampositive
bacteria and Gram-negative bacteria by the
hole agar diffusion method( Cappuccino and Sherman,
1998). The bacteria were grown on Nutrient agar
media. Muller-Hinton agar media were poured into the
plates to uniform depth of 5 mm and allowed to
solidify.
The bacteria suspensions at 1 x 106 cfu ml-1 (0.1
light density on 540 nm wave length) were streaked
over the surface of Mueller-Hinton agar media using
a sterile cotton swab to ensure confluent growth of the
organism. The holes made by cookporar , 6 mm in
diameter.
100 μL aliquots of the sample 33.3% (v/v), which
were then aseptically applied to the surface of agar
plates at well-spaced intervals. The plates were
incubated at 37 ºC for 24 h and then the inhibition
zone diameters were measured.
Results:
Chemical Analysis Results:
Chemical Analysis Results of Shekonin:
Fig.1: Shikonin structure
Nuclear Magnetic Resonance Spectroscope of
Shikonin: The results of NMR spectroscope showe,
1H-NMR (CDCl3 - 500 MHz ) δH: 12.50 (2H, s,H4,5),
7-7.20 (Aromatic Hydrogen 3H, s,H6,7,3), 7.00(2H,
s,H1,8), 5.10 (1H, s, t, H10), 2.60 (2H, m, ,H11, ),
2.10(2H, m, H2,9), 1.68 (2H, s,H15,13 ), 1.60 (2H,
s,H16,12).
13C-NMR(CDCl3 – 500MHz) δC: 181.00(C1),
169.76(C4), 167.00(C5), 166.94(C8), 148.49(C2),
131.40(C6, C7), 136.10(C3), 111.84(C10), 111.59 (C9),
132.86(C14), 31.93 (C12), 117.69(C13), 26.63(C11),
22.69(C15) , 22.00(C6) .
13Cdept-NMR(CDCl3 – 500MHz) δC: 69.18(C15),
32.85(C3), 25.76(C7), 22.35(C13), 20.96(C6), 17.96(C16)
(Morales-Rios et al., 1988; Silverstein and
Webster,1997 ).
Antibacterial Activity Results: The antibacterial
activity of Shikonin against microorganisms examined
in the present study and their potency were assessed
by the presence or absence of inhibition zone
diameter.
The results are given in table (4). The data of
the study clearly indicated that the Shikonin has a
strong antibacterial activity against all bacterial species
Klebsiella pneumoniae (38 mm), Escherichia coli (45
mm), Staphylococcus
aureus (40 mm), Pseudomonas aeruginosa (50 mm).
Discussion: Naphthoquinones compounds like shikonin
has been shown to have many biological activity[6,8,9].
Hydrophobic compounds like shikonin are likely
to have an influence on biological membranes.
The cytoplasmic membrane of bacteria has two
principal functions: (I) barrier function and energy
transduction which allow the membrane to form ion
gradients that can be used to drive various processes,
and (II) formation of a matrix for membrane-embedded
proteins[12].
The results showed that the shikonin exhibit high
activity against many bacterial species this agreement
with previous study[11].
The activity of Naphthoquinones compounds
increases with increasing lipophilicity of alkoxy
group[3].
The higher antibacterial activities of shikonin might be
due to the three hydroxy groups, which give the
compound more activity[9]. In this study it is supposed
that these compounds may scavenge free radicals
(antioxidant activity)[5].
The shikonin may play an important role of the
antibacterial activity via the inhibition of protein
synthesis[10].
Moreover, the rings compounds acts as a
protoplasm toxin to destroy the cell wall system and
to precipitate protein in cells[7].
On the other hand, the hydroxyl group was
supposed to have essential role in the antibacterial
activity to assume another role to increase the
activity[2].
1453
J. Appl. Sci. Res., 6(9): 1452-1456, 2010
Table 1: 500 MHz 1H-NMR data of Shikonin in CDCl3
Chemical shift (ppm) Assessment 1H
12.50 2H (OH)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
7.20 3H- Aromatic
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
7.00 2H
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5.10 1H
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2.60 2H
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2.10 2H
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1.68 2H
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1.60 2H
Table 2: 500 MHz 13C-NMR data for Shikonin in CDCl3
Chemical shift (ppm) Assessment 13C
181.00 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
148.49 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
136.10 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
169.76 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
167.00 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
166.94 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
132.86 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
131.40 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
117.69 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
111.84 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
111.59 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
31.93 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
26.63 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
22.69 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
22.00 1C
Table 3: 500 MHz 13Cdept-NMR data for Shikonin in CDCl3
Chemical shift (ppm) Assessment 13C
137.88 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
121.22 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
115.54 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
114.33 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
111 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
55.88 1C
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
39.92 1C
1454
J. Appl. Sci. Res., 6(9): 1452-1456, 2010
Table 4: Inhibition zone diameter (mm) of Shikonin against all bacterial species
Bacteria Inhibition zone
Escherichia coli 45
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pseudomonas aeruginosa 50
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Klebsiella pneumoniae 38
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Staphylococcus aureus 40
Fig. 2: 500 MHz 1H-NMR spectrum of Shikonin in CDCl3
.
Fig.3: 500 MHz 13C-NMR spectrum of Shikonin in CDCl3
1455
J. Appl. Sci. Res., 6(9): 1452-1456, 2010
Fig.4: 500 MHz 13C dept-NMR spectrum of Shikonin in CDCl3
REFERENCES
1. Afzal, M. and G. Al-Oriqat, 1986. Shikonin
Derivatives. V. Chemical Investigations of Arnebia
decumbens .Agric. Biol. Chem., 50(3): 759-760.
2. Bae, K.H., S.H. Koo and W.J. Seo, 1991.
Synthesis and antibacterial activities of 4-hydroxyo-
phenylphenol and 3,6-diallyl-4-hydroxy-ophenylphenol
against a cariogenic bacterium
Streptococcus mutans. Arch Pharm Res. Mar., 14:
41-3.
3. Bullock, F.J., 1967. Antiprotozoal Quinones. I.
Synthesis of 2-Hydoxy-3alky-1,4-naphthoquinones
as Potential Coccidiostats. Antiprotozoal
Naphthoquinones., 3: 313-314.
4. Chien-Chang, S., S. Wan-Jr, L. Shyh-Yuan, L.
Chia-Hung, L. Gum-Hee, 2000. Antimicrobial
activities of naphthazarins from Arnebia
euchroma., 65(12): 1857-1862 .
5. Dicko, M.H., H. Gruppen, A.S. Traore, A.G.
Voragen and W.J. Berkel, 2006. Phenolic
compounds and related enzymes as determinants
of sorghum for food use. Biotech. Molec. Biolo.
Rev., 1: 21-38.
6. Ding, Y.X., Z.J. Chen, S.G. Liu, D.N. Che, M.
Vetter and C.H. Chang, 2005. Inhibition of Nox-4
activity by plumbagin, a plant-derived bioactive
naphthoquninone .J. Pharm. Pharmacol., 57: 111-
116.
7. Gayon, P.R., 1972. Plant phenols.7th ed. Oliver
and Boyed Edinbury., pp: 254.
8. Hazra, B., R. Sarkar, S. Bhattacharyya, P.K.
Ghosh, G. Chel and B. Dinda, 2002. Synthesis of
plumbagin derivatives and their nhibitory activities
against Ehrlch ascites carcinoma n vivo and
Leishmaina donovani promastigotes n
vitro.Phytother. Res., 16: 133-137.
9. Farnsworth, N.R. and G.A. Cordell, 1976. A
review of some biologically active compounds
isolated from plants as reported n the 1974-1975
literature. Lioydia, 39: 420-455.
10. Simons, C., S.E. Walsh, J.Y. Maillard and A.D.
Russell, 2000. A note: ortho-phthalaldehyde:
proposed mechanisim of action of a new
antimicrobial agent. Let. Appl. Microbiol., 31:
299-302.
11. Singh, B., M.K. Sharmaa, P.R. Meghwal, P.M.
Sahua and S.Singh, 2003. Anti-inflammatory
activity of shikonin derivatives from Arnebia
hispidissima. Phytomedicine., 10(5): 375-380.
12. Ultee, A., E.P. Kets and E.J. Smid, 1999.
Mechanisms of action of carvacol on the foodborne
pathogen Bacillus cereus. Appl. Environ.
Microbial., 65: 4606-4610.
1456